

New LVM RAID Features GUUG FFG Kölle 2016

Heinz Mauelshagen Consulting Development Engineer

TOP

- Current LVM RAID features and missing ones
- New LVM RAID features being developed
- Beyond MD...
- Use cases and example
- New (and existing) RAID features demo
- Conclusions
- Q&A

Current LVM RAID Features

- Creation of raid1/4,raid5(_ls,_la,_rs,_ra),raid6(_zr,_nr,_nc) and one limited raid10(_near) (2 data copies, even number of stripes) layouts
- Resizing of raid1 LVs
- Only growing of raid4/5/6/10 LVs
- RAID LVs limited to maximum of 8 images
- Conversion of linear to raid1 and back
- Conversion of mirror to raid1 but not back
- Repair of RAID LVs (i.e. replacement of dead RAID images)
- Replacement of RAID images (i.e. intact ones)
- Conversion of thinpools and cachepools to RAID
- pvmove of RAID images

...and missing LVM RAID Features

- Shrinking of raid4/5/6/10 Lvs
- More than 8 images per RAID LV
- Split mirrors of mirrors
- raid0 support
- Takeover → switch between RAID levels
- Reshaping → layout change on a certain RAID level
 - number of stripes
 - stripe size
 - allocation algorithm
 - number of data copies
- Conversions from native dm targets to RAID (but aforementioned linear <-> raid1 and mirror → raid1)
- Layered RAID like raid61 with stripe and/or stripe size variations

New LVM RAID features being developed

- All MD supported RAID levels supported
 - raid0(_meta)
 - raid5_n
 - raid6_ls_6, raid6_la_6, raid6_rs_6, raid6_ra_6, raid6_n_6 to be able to takeover raid5_* ↔ raid6_*
 - raid10_near, raid10_offset, raid10_far with any number of stripes/data copies
- Conversion between all raid levels (aka MD takeover) and more
 - raid0↔ raid4/raid5/raid6/raid10
 - raid4 \leftrightarrow raid5
 - raid5 \leftrightarrow raid6
 - raid1 \leftrightarrow raid5

New LVM RAID features being developed...

- Conversion of RAID layouts (aka MD reshaping):
 - number of stripes
 - stripe size
 - region size (but raid0*)
 - allocation algorithm
- Change of region size on existing RAID LVs to allow for upscale or optimization of region contention
 - Ivconvert –regionsize N \$Iv

Beyond MD...

- MD reshaping causes size changes when adding/removing image components to/from RAID LVs → introduce RAID LV duplication (i.e. raid1 top-level LV with N sub LVs of arbitrary layout)
 - allows to use (almost) any arbitrary LV type (e.g. linear, thin, striped, raid*)
 - "Ivconvert –duplicate –type ... \$Iv" converts given LV into a duplicating one with another sub LV defined by "--type ..." and sync to it; sub LVs go by name infix "_dup_"
 - each additional "lvconvert –duplicate …" adds another sub LV and syncs to it
 - Ivconvert –unduplicate –name … \$Iv" removes the top-level raid1 LV keeping the named sub LV whilst removing the rest of the sub Lvs
 - "Ivconvert –splitmirror 1 –name ... \$Iv" splits the named sub LV off
 - "Ivconvert –splitmirror 1 –trackchanges –name … \$Iv" splits the named sub LV off r/o, allowing it to be merged back into the duplicating LV

...Beyond MD

- Introduce raid01, not being supported by MD
 - "Ivcreate –type raid01 –stripes N –mirrors M … \$vg"
- raid10_far can't be reshaped at all in MD
 - enhanced "lvconvert –mirrors N \$lv" to change number of data copies
 - "lvconvert –type striped/raid10_far \$lv" to convert to/from raid10_far
- raid10_{near,offset} can only be reshaped into each other, change stripe size and add disks in MD; duplication removes constraints
 - "Ivconvert –duplicate –type raid10_{near,offset} –mirrors N ... \$Iv" allows to change the number of data copies and/or reduce stripes

Use Cases and Examples

- (Changing) throughput requirements can be optimized online by reshaping to different layouts (e.g. raid5_ls → raid5_ra), change number of stripes or stripe size
- Resilience levels can be adjusted online, e.g.:
 - raid5 \rightarrow raid6 to enhance from single image to double image failures
 - raid4/5/6 → raid10* to even stand multiple image failues (i.e. raid10_offset with 5 data copies on minimum 5 stripes standing a maximum of 4 image failures; more disks recommended to take advantage of striped throughput advantage)
- Performance enhancements by online restriping
 - Add images to existing striped RAID LVs growing them in size (e.g. raid6 with 4 data stripes/6 stripes total → 7 data stripes/9 stripes total)
 - Direct conversion of a (say linear) LV to a striped LV by duplication
- Set up enhanced, distributed RAID LVs
 - Duplication across fire areas, e.g. a 2-legged raid61 LV (use PV tags to distinguish disks)
 - Duplication to cope with varying storage properties,
 e.g. a 3-way striped sub LV on fast and a 5-way striped on slow PVs

New (and existing) RAID features demo

- · ...

Conclusions...

- The new LVM/DM RAID features provide full MD RAID functionality
- They go beyond MD conversion constraints with the new duplication feature or the possibility to change the number of data copies in raid10_far LVs
- Thus, they provide the user with a broad range of powerful possibilities to address performance, resilience and TCO storage requirements and redefine them online thus coping with varying demands

Q&A

. . .

- Which are your LVM RAID use cases?
- What RAID functionality do you request?